Technische Universität Berlin Institut für Mathematik PDE-constrained control using Comsol Multiphysics – Control of the Navier-Stokes equations

نویسنده

  • Thomas Slawig
چکیده

We show how the software Comsol Multiphysics can be used to solve PDE-constrained optimal control problems. We give a general formulation for such kind of problems and derive the adjoint equation and optimality system. Then these preliminaries are specified for the stationary Navier-Stokes equations with distributed and boundary control. The main steps to define and solve a PDE with Comsol Multiphysics are described. We describe how the adjoint system can be implemented, and how the optimality system can be used by Comsol Multiphysics’s built-in functions. Special crucial topics concerning efficiency are discussed. Examples with distributed and boundary control for different type of cost functionals in 2 and 3 space dimensions are presented. Updated version for Comsol Multiphysics 3.2 Comsol Multiphysics is a trademark of Comsol Inc. The original publication is available at www.springerlink.com

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

Technische Universität Berlin Institut für Mathematik Regularization and Numerical Simulation of Dynamical Systems Modeled with Modelica

Quasi-linear differential-algebraic equations (DAEs) are essential tools for modeling dynamical processes, e.g. for mechanical systems, electrical circuits or chemical reactions. These models are in general of higher index and contain so called hidden constraints which lead to instabilities and order reductions during numerical integration of the model equations. In this article we consider dyn...

متن کامل

TECHNISCHE UNIVERSITÄT BERLIN Regularization of Constrained PDEs of Semi-Explicit Structure

A general framework for the regularization of constrained PDEs, also called operator DAEs, is presented. The given procedure works for semi-explicit operator DAEs of first order which includes the Navier-Stokes and other flow equations. This reformulation is a regularization in the sense that a semi-discretization in space leads to a DAE of lower index, i.e., of differentiation index 1 instead ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006